Battle Damage - Savo Island

One of the worst naval defeats the Allies suffered in WWII was the Battle of Savo Island during the fight for Guadalcanal.  The night battle took place 8-9-Aug-1942.  A Japanese naval force caught an Allied force that was unprepared mentally, physically, technologically, doctrinally, and tactically for combat and sank or badly damaged several cruisers.

Wikipedia has a good writeup describing the overall action if you’d like to learn more about the battle.

Savo Island - Quincy Spotlighted and Under Fire


What we’re going to do today is examine the battle damage received by the Allied cruisers and attempt to compare that to today’s ships and see what lessons we can learn.  Five cruisers were attacked by the Japanese force.  Four of the cruisers were severely damaged or sunk.  Here’s a brief summary of the damage each absorbed.



USS Astoria (CA-34)

Astoria received at least 65 hits with the majority being 8” shells. (6)

Astoria was initially hit by seven 8” shells and responded with her main guns.  Shortly after,

“During a six-minute stretch beginning at 2 am, the Astoria was hit time after time by shells both large and small.” (4)

Though badly damaged, the ship was in no danger of sinking and her main guns were mostly still operational.

“The bridge personnel still had control of both steering and engines. Communications lines were still open with central station, which was believed to be intact. There were no major fires reported below the main deck. However, the ship was on fire amidships, turret one was out, and most of the secondary gun batteries had been silenced.” (4)

Even as the pounding continued, Astoria was still able to fight back.

“Between 02:00 and 02:15, Aoba, Kinugasa, and Kako joined Chokai in pounding Astoria, destroying the cruiser’s engine room and bringing the flaming ship to a halt.  At 02:16, one of Astoria’s remaining operational main gun turrets fired at Kinugasa’s searchlight, but missed and hit Chokai’s forward turret, putting the turret out of action and causing moderate damage to the ship.”

Throughout the following morning, damage control efforts were undertaken and Astoria was taken under tow.  Unfortunately, additional internal explosions caused by fires eventually led to the ship being abandoned and she sank just after noon.

USS Astoria



MHAS Canberra (D33)

Canberra was hit by 24-30 8” shells in the span of a few minutes and one or two torpedoes which may have been friendly fire from the destroyer Bagley. (1)(2)  Despite the damage from shells and torpedoes, the Canberra was still afloat the morning after the battle and in no danger of sinking but could not be towed to safety in time and was sunk by an American destroyer.

“Admiral Turner ordered that Canberra be abandoned and sunk if she could not raise steam. Once all survivors had been evacuated, Selfridge fired 263 5-inch shells and four torpedoes into Canberra in an attempt to sink her. Eventually a torpedo fired by the destroyer Ellet administered the final blow.” (3)

Canberra absorbed 24-30 8” shells and one or two torpedoes during the battle and later required 263 5” shells and 5 torpedoes to sink the ship after it was abandoned.

HMAS Canberra



USS Quincy (CA-39)

Quncy was hit by at least 54 shells, the majority being 8” shells, and three torpedoes. (5)

Quincy was caught in a crossfire between Aoba, Furutaka, and Tenryū, and was hit heavily and set afire. Quincy's captain ordered his cruiser to charge towards the eastern Japanese column, but as she turned to do so Quincy was hit by two torpedoes from Tenryū, causing severe damage. Quincy managed to fire a few main gun salvos, one of which hit Chōkai's chart room 6 meters (20 ft) from Admiral Mikawa and killed or wounded 36 men, although Mikawa was not injured. At 02:10, incoming shells killed or wounded almost all of Quincy's bridge crew, including the captain. At 02:16, the cruiser was hit by a torpedo from Aoba, and the ship's remaining guns were silenced. (1)

The ship sank shortly thereafter.

USS Quincy



USS Vincennes (CA-44)

Vincennes received at least 57 and possibly up to 74 hits, the majority being 8” shells, and one or two torpedoes. (6)(1)

As Vincennes began to receive damaging shell hits, her commander, U.S. Captain Frederick L. Riefkohl, ordered an increase of speed to 25 knots (46 km/h), but shortly thereafter, at 01:55, two torpedoes from Chōkai hit, causing heavy damage. Kinugasa now joined Kako in pounding Vincennes. Vincennes scored one hit on Kinugasa causing moderate damage to her steering engines. The rest of the Japanese ships also fired and hit Vincennes up to 74 times, and, at 02:03, another torpedo hit her, this time from Yūbari. With all boiler rooms destroyed, Vincennes came to a halt, burning "everywhere" and listing to port. At 02:16, Riefkohl ordered the crew to abandon ship, and Vincennes sank at 02:50. (1)

USS Vincennes


Conclusions

Although the exact numbers of shell and torpedo hits will never be known, each ship was hit by dozens of 8” shells and multiple torpedoes.  The amount of damage that these ships absorbed was staggering.  Does anyone believe that a modern Burke, for example, could absorb several dozen 8” shells and multiple torpedoes and continue to fight, to any extent, and have any chance of remaining afloat?

This was not a case of a single ship, in some sort of fluke circumstance, being able to absorb more damage than normal – each ship absorbed dozens of hits and torpedoes and kept fighting right until the end.

That’s another aspect that is striking.  Each ship was able to keep fighting as damage was being absorbed.  To be sure, as damage accumulated, the effectiveness of each ship was diminished but the point is that they kept fighting and, as documented in some of the quotes, were able to dish out some significant damage while being pounded to the point of sinking.  In contrast, the vaunted LCS is DESIGNED TO BE ABANDONED upon receipt of the first significant battle damage.  We’ve seen that gently drifting aground at 1-2 knots and rocking slightly was enough to render the Port Royal’s Aegis arrays and VLS systems inoperable by “knocking” them out of alignment.  Initially, the Navy wanted to scrap the Port Royal, the youngest Aegis cruiser, as a result of the gentle grounding.

Does anyone believe that after absorbing a couple of dozen anti-ship missiles (an 8” shell is very roughly comparable to a Harpoon missile, for comparison’s sake), a Burke could still fire its main battery which is its VLS?

This leads to another striking aspect and that is armor and, in particular, armored main turrets.  Despite, the avalanche of 8” shell hits the cruisers absorbed, the bulk of their main turrets continued to function.  Yes, as the pounding continued the turrets were, one by one, rendered inoperable but, even at the end, the ships generally still had a least one turret functioning.

The turrets were heavily armored.  The Astoria, for example, had turrets with up to 8” of armor.  Ship designers of the period realized that it was pointless to design a ship whose main weapon could be put out of action by anything less than a major caliber shell and tried to prevent even that.  It was intended that the last piece of equipment to fail should be the main battery.

Closely related to turret armor and survivability was sensor redundancy.  Again, ship designers recognized that the largely unarmored sensors (optical, at that time – radar was in its infancy) were critical to the functioning of the main guns and that they were vulnerable.  To compensate for this vulnerability, the designers built in a high degree of redundancy.  Each ship had multiple fire control directors scattered across the topsides and the turrets could be controlled by any of the directors.  Further, each mount had various modes of local control as the ultimate backup. 

Now, consider our Burkes – they have three fire control guidance radars and two of them are located within about 10 feet of each other.  If the Burke loses those radars, they lose their main combat capability.  Does that seem like a good combat design?

Lessons

  • 5” shells are not ship sinkers.  The Canberra example clearly proves this.

  • 8” is the minimum caliber for ship sinking.

  • Internal explosions, well after the initial damage, are often fatal.  Warships need better flooding mechanisms, better ventilation of explosive gases, and better containment methods of breeched fuel tanks.

  • Armor buys longevity in battle.  We need to not only armor our ships, in general, but the main weapons need additional armor.

  • Sensor redundancy is vital to enable continued combat effectiveness in the face of damage.

  • Main weapon redundancy is vital to ensure that a damaged ship can continue fighting.

  • Excess crew size is mandatory for damage control and attrition replacements for casualties during battle.


We need to recognize the lessons from history and apply them to modern warship design.  Unfortunately, it for the last several decades we have not done this.  Our ship designs are ever more fragile and are not combat worthy.

The vertical launch system (VLS), which is our main battery today, is an interesting case and is worth a closer look.

Applying the lessons of combat, the VLS should be distributed rather than clustered.  We have done that to an extent with the Burke’s VLS being split into two groups, one forward and one aft.  Thought should be given to splitting that even further.  Consider that a WWII cruiser had three main turrets and several secondary guns.  Thought should be given to distributing the VLS into several groups rather than just two.

Noting that our main battery should be armored such that it is the last thing to fail on a ship, it appears that the VLS is armored on the sides and bottom but not the top.  Note that hard information about VLS armor is not readily available so I’m speculating to a large degree about this.  Photos indicate that the sides and, presumably, the bottom of the VLS pit are quick thick – around 5-7 inches.  Presumably, some portion of that is armor.  The top, however, is clearly not armored.  The open VLS hatches are thin.  It appears that the armor is designed not to prevent damage but to direct the damage upwards rather than into the ship.  If true, this means that the VLS is relatively unprotected from topside hits which violates the lesson from combat.  The VLS should be the last thing to fail but this is clearly not the case.  The Port Royal lost her VLS capability by gently drifting ashore.  What would have happened if she had been hit by dozens of anti-ship missiles and whipsawed in the resulting explosions?

We noted the need for redundant sensors.  The jury is out about the damage resilience of Aegis radar arrays but the three fire control guidance radars on the Burke with two of them within ten feet or so of each other certainly constitute a significant vulnerability.  We need more guidance radars (that function is supposedly included in the main array of more recent radars) and they need to be distributed as widely as possible.  Thought also needs to be given to backup modes of guidance such as electro-optical.

In summary, we need to stop designing peacetime ships and start designing combat WARships that are built to absorb damage and keep fighting.  History shows us how to do this if we’ll pay attention to the lessons.





_________________________________________
  
(1)Wikipedia, “Battle of Savo Island”,

(2)”Neptune’s Inferno”, James Hornfischer, Bantam, 26-Dec-2010, ISBN 13: 9780553806700

(3)Navy (Australia) website, “Battle of Savo Island - Loss of HMAS Canberra”, J.H. Straczek,

(4)Warfare History Network, “Disaster Off Savo Island:  The Sinking of USS Astoria”, John Domagalski, 22-Jul-2016,

(5)History of War website, “USS Quincy (CA-39)”,

(6)Naval History and Heritage Command website, “USS Quincy CA39, USS Astoria CA34 & USS Vincennes CA44 Loss in Action, Battle of Savo Island 9 August, 1942”, War Damage Report No. 29, 21-Jun-1943,

Belum ada Komentar untuk "Battle Damage - Savo Island"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel